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Alzheimer’s disease is the primary cause of dementia worldwide, with an increasing morbidity burden that may outstrip diagnosis

and management capacity as the population ages. Current methods integrate patient history, neuropsychological testing and MRI

to identify likely cases, yet effective practices remain variably applied and lacking in sensitivity and specificity. Here we report an

interpretable deep learning strategy that delineates unique Alzheimer’s disease signatures from multimodal inputs of MRI, age, gen-

der, and Mini-Mental State Examination score. Our framework linked a fully convolutional network, which constructs high reso-

lution maps of disease probability from local brain structure to a multilayer perceptron and generates precise, intuitive visualization

of individual Alzheimer’s disease risk en route to accurate diagnosis. The model was trained using clinically diagnosed Alzheimer’s

disease and cognitively normal subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n = 417) and vali-

dated on three independent cohorts: the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) (n = 382),

the Framingham Heart Study (n = 102), and the National Alzheimer’s Coordinating Center (NACC) (n = 582). Performance of the

model that used the multimodal inputs was consistent across datasets, with mean area under curve values of 0.996, 0.974, 0.876

and 0.954 for the ADNI study, AIBL, Framingham Heart Study and NACC datasets, respectively. Moreover, our approach

exceeded the diagnostic performance of a multi-institutional team of practicing neurologists (n = 11), and high-risk cerebral regions

predicted by the model closely tracked post-mortem histopathological findings. This framework provides a clinically adaptable

strategy for using routinely available imaging techniques such as MRI to generate nuanced neuroimaging signatures for

Alzheimer’s disease diagnosis, as well as a generalizable approach for linking deep learning to pathophysiological processes in

human disease.
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Introduction
Millions worldwide continue to suffer from Alzheimer’s dis-

ease (Scheltens et al., 2016), while attempts to develop effect-

ive disease-modifying treatments remain stalled. Though

tremendous progress has been made towards detecting

Alzheimer’s disease pathology using CSF biomarkers

(Frisoni et al., 2010; Jack et al., 2013; Harper et al., 2014),

as well as PET amyloid (Nordberg, 2004; Bohnen et al.,

2012), and tau imaging (Mattsson et al., 2019;

Ossenkoppele et al., 2019), these modalities often remain

limited to research contexts. Instead, current standards of

diagnosis depend on highly skilled neurologists to conduct

an examination that includes inquiry of patient history, an

objective cognitive assessment such as bedside Mini-Mental

State Examination (MMSE) or neuropsychological testing

(McKhann et al., 2011), and a structural MRI to rule in

findings suggestive of Alzheimer’s disease (Frisoni et al.,

2010). Clinicopathological studies suggest the diagnostic

sensitivity of clinicians ranges between 70.9% and 87.3%

and specificity between 44.3% and 70.8% (Beach et al.,

2012). While MRIs reveal characteristic cerebral changes

noted in Alzheimer’s disease such as hippocampal and par-

ietal lobe atrophy (Whitwell et al., 2012), these characteris-

tics are considered to lack specificity for imaging-based

Alzheimer’s disease diagnosis (van de Pol et al., 2006;

Barkhof et al., 2007; Raji et al., 2009; Frisoni et al., 2010).

Given this relatively imprecise diagnostic landscape, as well

as the invasive nature of CSF and PET diagnostics and a

paucity of clinicians with sufficient Alzheimer’s disease diag-

nostic expertise, advanced machine learning paradigms such

as deep learning (LeCun et al., 2015; Hinton, 2018; Topol,

2019), offer ways to derive high accuracy predictions from

MRI data collected within the bounds of neurology practice.

Recent studies have demonstrated the application of deep

learning approaches such as convolutional neural networks

(CNNs) for MRI and multimodal data-based classification of

cognitive status (Qiu et al., 2018). Despite the promising

results, these models have yet to achieve full integration into

clinical practice for several reasons. First, there is a lack of

external validation of deep learning algorithms since most

models are trained and tested on a single cohort. Second,

there is a growing notion in the biomedical community that

deep learning models are ‘black-box’ algorithms

(Castelvecchi, 2016). In other words, although deep learning

models demonstrate high accuracy classification across a

broad spectrum of disease, they neither elucidate the underly-

ing diagnostic decisions nor indicate the input features associ-

ated with the output predictions. Lastly, given the uncertain

onset and heterogeneity of symptoms seen in Alzheimer’s dis-

ease, a computerized individual-level characterization of

Alzheimer’s disease remains unresolved. Considering these

factors, we surmise that the clinical potential of deep learning

is attenuated by a lack of external validation of single co-

hort-driven models, and an increasing use of opaque deci-

sion-making frameworks. Thus, overcoming these challenges

is not only crucial to harness the potential of deep learning

algorithms to improve patient care, but to also pave the way

for explainable evidence-based machine learning in the med-

ical imaging community. To address these limitations, we

developed a novel deep learning framework that links a fully

convolutional network (FCN) to a traditional multilayer per-

ceptron (MLP) to generate high-resolution visualizations of

Alzheimer’s disease risk that can then be used for accurate

predictions of Alzheimer’s disease status (Fig. 1). Four dis-

tinct datasets were chosen for model development and valid-

ation: Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset, Australian Imaging, Biomarker and Lifestyle

Flagship Study of Ageing (AIBL), Framingham Heart Study

(FHS), and National Alzheimer’s Coordinating Center

(NACC) (Table 1 and Supplementary Fig. 1). Association of

model predictions with neuropathological findings along

with a head-to-head comparison of the model performance

with a team of neurologists underscored the validity of the

deep learning framework.

Materials and methods

Study participants and data
collection

Data from ADNI, AIBL, FHS, and NACC cohorts were used
in the study (Table 1 and Supplementary Fig. 1). ADNI is a
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longitudinal multicentre study designed to develop clinical,
imaging, genetic, and biochemical biomarkers for the early
detection and tracking of Alzheimer’s disease (Petersen et al.,
2010). AIBL, launched in 2006, is the largest study of its
kind in Australia and aims to discover biomarkers, cognitive
characteristics, and lifestyle factors that influence the devel-
opment of symptomatic Alzheimer’s disease (Ellis et al.,
2010). The FHS is a longitudinal community cohort study

and has collected a broad spectrum of clinical data from
three generations (Massaro et al., 2004). Since 1976, the
FHS expanded to evaluate factors contributing to cognitive
decline, dementia, and Alzheimer’s disease. Finally, the
NACC, established in 1999, maintains a large relational
database of standardized clinical and neuropathological re-
search data collected from Alzheimer’s disease centres across
the USA (Beekly et al., 2004).

Figure 1 Schematic of the deep learning framework. The FCN model was developed using a patch-based strategy in which randomly

selected samples (sub-volumes of size 47 � 47 � 47 voxels) of T1-weighted full MRI volumes were passed to the model for training (Step 1). The

corresponding Alzheimer’s disease status of the individual served as the output for the classification model. Given that the operation of FCNs is

independent of input data size, the model led to the generation of participant-specific disease probability maps of the brain (Step 2). Selected vox-

els of high-risk from the disease probability maps were then passed to the MLP for binary classification of disease status (Model A in Step 3; MRI

model). As a further control, we used only the non-imaging features including age, gender and MMSE and developed an MLP model to classify

individuals with Alzheimer’s disease and the ones with normal cognition (Model B in Step 3; non-imaging model). We also developed another

model that integrated multimodal input data including the selected voxels of high-risk disease probability maps alongside age, gender and MMSE

score to perform binary classification of Alzheimer’s disease status (Model C in Step 3; Fusion model). AD = Alzheimer’s disease; NC = normal

cognition.
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Model training, internal validation and testing were per-

formed on the ADNI dataset. Following training and internal

testing on the ADNI data, we validated the predictions on

AIBL, FHS, and NACC. The criterion for selection included

individuals aged 555 years, with 1.5 T, T1-weighted MRI scans

taken within ±6 months from the date of clinically confirmed

diagnosis of Alzheimer’s disease or normal cognition

(Supplementary Fig. 1). We excluded cases including

Alzheimer’s disease with mixed dementia, non-Alzheimer’s dis-

ease dementias, history of severe traumatic brain injury, severe

depression, stroke, and brain tumours, as well as incident major

systemic illnesses. Note that this inclusion and exclusion criter-

ion was adapted from the baseline recruitment protocol devel-

oped by the ADNI study (Petersen et al., 2010), and to maintain

consistency, the same criterion was applied to other cohorts as

applicable. This led to the selection of 417 individuals from the

ADNI cohort, 382 individuals from AIBL, 102 FHS partici-

pants, and 565 individuals from the NACC cohort. If an indi-

vidual had multiple MRI scans taken within the time window,

then we selected the scan closest to the date of clinical diagnosis.

For most of these selected cases, age, gender and MMSE score

were available.

Algorithm development

An FCN was designed to input a registered volumetric MRI

scan of size 181 � 217 � 181 voxels and output the

Alzheimer’s disease class probability at every location. We used

a novel, computationally efficient patch-wise training strategy to

train the FCN model (Fig. 1). This process involved random

sampling of 3000 volumetric patches of size 47 � 47 � 47 vox-

els from each training subject’s MRI scan and used this informa-

tion to predict the output of interest (Supplementary Fig. 2).

The size of the patches was the same as the receptive field of the

FCN.

The FCN consists of six convolutional blocks (Supplementary

Table 1). The first four convolutional blocks consist of a 3D

convolutional layer followed by the following operations: 3D
max pooling, 3D batch-normalization, Leaky Relu and
Dropout. The last two convolutional layers function as dense

layers in terms of the classification task and these two layers
play a key role in boosting model efficiency (Shelhamer et al.,
2017). The network was trained de novo with random initial-

ization of the weights. We used the Adam optimizer with a
0.0001 learning rate and a mini-batch size of 10. During the
training process, the model was saved when it achieved the low-
est error on the ADNI validation dataset. After FCN training,

single volumetric MRI scans were forwarded to obtain complete
arrays of disease probabilities that we refer to as disease prob-
ability maps. Once trained, the process of obtaining disease

probability maps from test cases took �1 s on an NVIDIA
GTX Titan GPU.

The FCN was trained by repeated application to cuboidal

patches of voxels randomly-sampled from a full volume of se-
quential MRI slices. Because the convolutions decrease the size
of the input across successive layers of the network, the size of

each patch was selected such that the shape of the final output
from each patch was equal to 2 � 1 � 1 � 1 (Supplementary
Table 1); i.e. the application of the FCN to each patch during

training produced a list of two scalar values. These values can
be converted to respective Alzheimer’s disease and normal cog-
nition probabilities by application of a softmax function, and
the greater of the two probabilities was then used for classifica-

tion of disease status. In this way, the model was trained to infer
local patterns of cerebral structure that suggested an overall dis-
ease state.

After generating disease probability maps for all subjects, an
MLP model framework was developed to perform binary classi-
fication to predict Alzheimer’s disease status by selecting

Alzheimer’s disease probability values from the disease probabil-
ity maps. This selection was based on observation of the overall
performance of the FCN classifier as estimated using the

Matthew’s correlation coefficient values on the ADNI training
data. Specifically, we selected disease probability map voxels

Table 1 Study population and characteristics

Dataset ADNI AIBL FHS NACC

Characteristic NC AD P-value NC AD P-value NC AD P-value NC AD P-value

(n = 229) (n = 188) (n = 320) (n = 62) (n = 73) (n = 29) (n = 356) (n = 209)

Age, years,

median

[range]

76 [60, 90] 76 [55, 91] 0.4185 72 [60, 92] 73 [55, 93] 0.5395 73 [57, 100] 81 [67, 94] 50.0001 74 [56, 94] 77 [55, 95] 0.0332

Education, years,

median

[range]

16 [6, 20] 16 [4, 20] 50.0001 NAa NAa NA 14 [8, 25] 13 [5, 25] 0.3835 16b [0, 22] 14.5b [2, 24] 0.8363

Gender, male (%) 119 (51.96) 101 (53.72) 0.7677 144 (45.00) 24 (38.71) 0.40 37 (50.68) 12 (41.38) 0.51 126 (35.39) 95 (45.45) 0.0203

MMSE,

median [range]

29 [25, 30] 23.5 [18, 28] 50.0001 29 [25, 30] 21 [6, 28] 50.0001 29c [22, 30] 25c [10, 29] 50.0001 29c [20, 30] 22c [0, 30] 50.0001

APOE4,

positive (%)

61 (26.65) 124 (65.97) 50.0001 11 (3.44) 12 (19.35) 50.0001 13 (17.81) 11d (40.74) 0.035 102 (28.65) 112 (53.59) 50.0001

Four independent datasets were used for this study including: the ADNI dataset, the AIBL, the FHS, and the NACC. The ADNI dataset was randomly split in the ratio of 3:1:1,

where 60% of it was used for model training, 20% of the data were used for internal validation and the rest was used for internal testing. The best performing model on the valid-

ation dataset was selected for making predictions on the ADNI test data as well as on the AIBL, FHS and NACC datasets, which served as external test datasets for model valid-

ation. All the MRI scans considered for this study were performed on individuals within ±6 months from the date of clinical diagnosis. AD = Alzheimer’s disease; NA = not

available; NC = normal cognition.
aYears of education not available for all AIBL study participants.
bYears of education not available for some study participants.
cMMSE scores not available for some subjects in the study cohort within 6 months of diagnosis.
dAPOE4 (genetic) information not available for some subjects in the study cohort.
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from 200 fixed locations that were indicated to have high
Matthew’s correlation coefficient values (Supplementary Table
2). The features extracted from these locations served as input
to the MLP model that performed binary classification of
Alzheimer’s disease status (MRI model in Fig. 1, Step 3). Two
additional MLP models were developed where one model used
age, gender and MMSE score values as input to predict
Alzheimer’s disease status (non-imaging model in Fig. 1, Step 3),
and the other MLP took the 200 features along with age, gender
and MMSE score as input to predict Alzheimer’s disease status
(Fusion model in Fig. 1, Step 3). All the MLP models comprised
a single hidden layer and an output layer (Supplementary Table
3). The MLP models also included non-linear operators such as
ReLu and Dropout.

Image registration, intensity
normalization and volumetric MRI
segmentation

The MRI scans from all the datasets were obtained in NIFTI
format. We used the MNI152 template (ICBM 2009c
Nonlinear Symmetric template, McGill University, Canada) to
register all the scans. We used the FLIRT tool available within
the FSL package (Wellcome Center, University of Oxford, UK),
to align the scans with respect to the MNI152 template. A care-
ful manual review of the registered images revealed that the
automatic registration was done reasonably well on a large ma-
jority of the ADNI, AIBL and NACC cases. For cases that were
not registered well (mainly within FHS), we performed affine
transformations to perform manual registration using known
regions as landmarks. Given that there may not be a registration
method that would work for all MRI scans, our two-step pro-
cess resulted in a reasonable set of registered images.

After image registration, we normalized intensities of all the
voxels [mean = 0 and standard deviation (SD) = 1]. We then
adjusted the intensity of these voxels and other outliers by clip-
ping them to the range: [–1, 2.5], where any voxel with intensity
lower than –1 was assigned a value of –1, and a voxel with in-
tensity higher than 2.5 was assigned a value of 2.5. We then
performed background removal where all the voxels from back-
ground regions outside of the skull were set to –1 to ensure uni-
form background intensity.

Cortical and subcortical structures from volumetric MRI
scans of 11 individuals from the FHS cohort, with brain
autopsies, were segmented using FreeSurfer (Fischl, 2012). In-
built functions such as ‘recon-all’, ‘mri_annotation2label’,
‘tkregister2’, ‘mri_label2vol’, ‘mri_convert’ and ‘mris_calc’ were
used to obtain the segmented structures.

Neuropathological validation

We validated the FCN model’s ability to identify regions of high
Alzheimer’s disease risk by overlapping the predicted brain
regions with post-mortem findings. Eleven individuals from the
FHS dataset had histopathological evaluations of autopsied
brains, and four individuals out of the 11 had confirmed
Alzheimer’s disease. A blinded assessment to all demographic
and clinical information was conducted during the neuropatho-
logical evaluation. Detailed descriptions of the neuropathologic-
al evaluation have been previously reported (Au et al., 2012).
For this study, we examined the density of neurofibrillary

tangles, diffuse senile, neuritic or compacted senile plaques,
from paraffin-embedded sections extracted within the cortical
and subcortical regions. The sections were stained using
Bielschowsky silver stain. Immunocytochemistry was performed
for phosphorylated tau protein (Innogenetics, AT8, 1:2000) and
amyloid-b protein (Dako, 6F-3D, 1:500, pretreated in 90% for-
mic acid for 2 min). The maximum density of neurofibrillary
tangles per 200� field was assessed semi-quantitatively and
scores ranging from 1 to 4 were assigned (1 + : 1 neurofibrillary
tangle/field; 2 + : 2–5 neurofibrillary tangles/field; 3 + : 6–9
neurofibrillary tangles/field; and 4 + : 510 neurofibrillary tan-
gles/field). Similarly, diffuse senile, and neuritic or compacted se-
nile plaques were examined in a 100� microscopic field and
rated separately with scores ranging between 1 and 4 (1 + : 1–9
plaques/field; 2 + : 10–19/field, 3 + : 20–32/field, and 4 + : 432/
field). The final determinations were made by averaging the
count in three microscopic fields. The density of neurofibrillary
tangles, diffuse senile, and neuritic or compacted senile plaques
in each brain region were qualitatively compared with the mod-
el’s Alzheimer’s disease probability in that region.

Neurologist-level validation

Nine US board-certified practicing neurologists and two non-US
practicing neurologists (all referred to as neurologists) were
asked to provide a diagnostic impression (Alzheimer’s disease
versus normal cognition) of 80 randomly selected cases from the
ADNI dataset that were not used for model training. For each
case, the neurologists were provided with full volumetric, T1-
weighted MRI scan, subject’s age, gender and their MMSE score
for evaluation. The same parameters were used for training the
model (Fusion model in Fig. 1). To obtain estimates of how the
deep learning model compared to an average neurologist, the
characteristics of neurologist performance were averaged across
the neurologists who individually evaluated each test case. More
details on the neurologist approach to the ratings can be found
in the Supplementary material.

Convolutional neural network
model development

A 3D CNN was created to perform classification of Alzheimer’s
disease and normal cognition cases and its results compared
with the FCN model. The CNN model was trained, validated
and tested on the same split of data that were used for the FCN
model. To facilitate direct comparison with the FCN model, one
CNN model was developed using the MRI data alone, as well
as an additional MLP that included the CNN model-derived
features along with age, gender and MMSE score. Similar to the
FCN-MLP model, we merged the CNN-based imaging features
(i.e. feature vector after the first dense layer of the CNN) and
non-imaging features for MLP training.

The CNN model consisted of four convolutional layers fol-
lowed by two dense layers (Supplementary Fig. 3 and
Supplementary Table 4). Each convolution layer was followed
by ReLu activations. Max-pooling layers between the convolu-
tion blocks were used to down-sample the feature maps. Batch
normalization, Leaky ReLu, and dropout were applied after
each convolutional layer. Dropout and Leaky ReLu were
applied on the feature vectors of the dense layers. Softmax was
used on the final dense layer. The CNN model was trained
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from scratch with the same optimizer and loss function as the
FCN model. We used a learning rate of 0.0001 and mini-batch
size of six. The CNN model with the best performance on the
ADNI validation dataset was used to predict Alzheimer’s disease
status on the test datasets.

Random forests model

Derived MRI measures (n = 117), available from the MRI SPM
voxel-based morphometry analysis table in the ADNI dataset
were used as inputs to construct a random forests (RF) classifier
to predict the Alzheimer’s disease status. The random forests
model construction was repeated 10 times using different ran-
dom seeds, and the average model performance was reported.

Performance metrics

The models were constructed on the ADNI data, which was
randomly divided into three groups for training, validation and
testing, respectively. The models were built on each training and
validation split, and the performance on the test datasets (ADNI
test, AIBL, FHS and NACC) were evaluated, and this process
was repeated five times. Performance was presented as mean
and standard deviation over the model runs. The scans from the
ADNI testing dataset were used for the head-to-head compari-
son with the neurologists.

We generated sensitivity-specificity and precision-recall curves
based on model predictions on the ADNI test data as well as on
the other independent datasets (AIBL, FHS and NACC). For
each sensitivity-specificity and precision-recall curve, we also
computed the area under curve (AUC) values. Additionally, we
computed sensitivity, specificity, F1-score and Matthews correl-
ation coefficient on each set of model predictions. The F1-score
considers both precision and recall of a test and is defined as:

F1 ¼ 2 � TP=ð2 � TP þ FP þ FNÞ (1)

Here, TP denotes true positive values, and FP and FN denote
false-positive and false-negative cases, respectively. Matthew’s
correlation coefficient (MCC) is a balanced measure of quality
for dataset classes of different sizes of a binary classifier and
defined as follows:

MCC ¼ ½ðTP � TNÞ � ðFP � FNÞ�=½ðTP þ FPÞ �

ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ�0:5

(2)

The TN denotes true negative values. We also calculated in-
ter-annotator agreement using Cohen’s kappa (j), as the ratio
of the number of times two annotators agreed on a diagnosis.
The j-statistic measures inter-rater agreement for categorical
items. A j-score of 1 indicates perfect agreement between the
annotators. Average pairwise j was computed that provided an
overall measure of agreement between the neurologists.

Statistical analysis

To assess the overall significant levels of differences between
normal cognition and Alzheimer’s disease groups, two-sample t-
test and the v2 test were used for continuous and categorical
variables, respectively. The FCN model’s ability to identify
regions of high Alzheimer’s disease risk was evaluated by

overlapping the disease probability maps with post-mortem
histopathological findings. A subset of 11 individuals from the
FHS study sample had undergone brain autopsy and were used
for the analysis. In these participants, the locations and frequen-
cies of amyloid-b and tau pathologies, semi-quantitatively
reported by neuropathologists, were associated with high-
Alzheimer’s disease risk regions. The Spearman’s rank correl-
ation coefficient test was used to determine the strength and dir-
ection (negative or positive) of the relationship between these
regional Alzheimer’s disease probabilities and pathology scores.

Data availability

Python scripts and sample data are made available on GitHub
(https://github.com/vkola-lab/brain2020).

Results
Our deep learning pipeline can link an FCN to an MLP to

predict Alzheimer’s disease status directly from MRI data or

from a combination of MRI data and readily available non-

imaging data (Fig. 1). The FCN portion of the framework

generated high-resolution visualizations of overall

Alzheimer’s disease risk in individuals as a function of local

cerebral morphology. We refer to these visualizations as dis-

ease probability maps. The MLP then used the disease prob-

ability maps directly (MRI model in Fig. 1), or a set of non-

imaging features such as age, gender and MMSE score (non-

imaging model in Fig. 1), or a multimodal input data com-

prising disease probability maps, MMSE score, age and gen-

der (fusion model in Fig. 1), to accurately predict

Alzheimer’s disease status across four independent cohorts

(Table 1). We chose these known Alzheimer’s disease risk

factors because they can be easily obtained by non-

Alzheimer’s disease specialists. The FCN was trained to pre-

dict disease probability from randomly selected patches

(sub-volumes) of pixels sampled from the full MRI volume

(Fig. 1 and Supplementary Table 1). Given that this type of

network accepts input of arbitrary size, application of the

sub-volumetrically trained FCN could then be used to con-

struct high resolution disease probability maps without the

need to redundantly decompose full-sized test images.

Rapid processing of individual MRI volumes generated

volumetric distributions of local Alzheimer’s disease proba-

bilities in the brains of affected and unaffected individuals,

respectively (Fig. 2). To assess the anatomical consistency of

Alzheimer’s disease-suggestive morphology hot spots derived

from these distributions, population-wide maps of

Matthew’s correlation coefficient were constructed. This

mapping enabled identification of areas from which correct

predictions of disease status were most frequently derived

(Fig. 3), thus acting as a means to demonstrate structures

most affected by neuropathological changes in Alzheimer’s

disease.

As confirmation, average regional probabilities extracted

from selected segmented brain regions (Fig. 4), were highly

associated with Alzheimer’s disease positive findings
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Figure 2 Subject-specific disease probability maps. (A) Disease probability maps generated by the FCN model highlight high-risk brain

regions that are associated with Alzheimer’s disease pathology. Individual cases are shown where the blue colour indicates low-risk and red indi-

cates high-risk of Alzheimer’s disease. The first two individuals were clinically confirmed to have normal cognition whereas the other two individ-

uals had clinical diagnosis of Alzheimer’s disease. (B–D) Axial, coronal and sagittal stacks of disease probability maps from a single subject with

clinically confirmed Alzheimer’s disease are shown. All imaging planes were used to construct 3D disease probability maps. Red colour indicates

locally inferred probability of Alzheimer’s disease 40.5, whereas blue indicates 50.5. AD = Alzheimer’s disease; NC = normal cognition.

Figure 3 Summary of the FCN model performance. (A) Voxel-wise maps of Matthew’s correlation coefficient (MCC) were computed in-

dependently across all the datasets to demonstrate predictive performance derived from all regions within the brain. (B–D) Axial, coronal and

sagittal stacks of the MCC maps at each cross-section from a single subject, are shown. These maps were generated by averaging the MCC values

on the ADNI test data.

A deep learning framework for AD classification BRAIN 2020: Page 7 of 14 | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

aa137/5827821 by U
niversity O

f Southern C
alifornia user on 26 M

ay 2020



Figure 4 Correlation of model findings with neuropathology. (A) Overlap of model predicted regions of high Alzheimer’s disease risk

with post-mortem findings of Alzheimer’s disease pathology in a single subject. This subject had clinically confirmed Alzheimer’s disease with

affected regions including the bilateral asymmetrical temporal lobes and the right-side hippocampus, the cingulate cortex, the corpus callosum,

part of the parietal lobe and the frontal lobe. The first column (i) shows MRI slices in three different planes followed by a column (ii), which

shows corresponding model predicted disease probability maps. A cut-off value of 0.7 was chosen to delineate the regions of high Alzheimer’s

disease risk and overlapped with the MRI scan in the next column (iii). The next column (iv), depicts a segmented mask of cortical and
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reported in post-mortem neuropathology examinations.

Specifically, these regions correlated with the locations and

numerical frequency of amyloid-b and tau pathologies

reported in available autopsy reports from the FHS dataset

(n = 11) (Supplementary Table 5). Post-mortem data indi-

cated that, in addition to predicting higher region-specific

Alzheimer’s disease probabilities in individuals with disease

compared to those without, proteinopathies were more fre-

quent in cerebral regions implicated by the model in

Alzheimer’s disease (Fig. 4). Model-predicted regions of high

Alzheimer’s disease risk overlapped with the segmented

regions that were indicated to have high localized deposition

of amyloid-b and tau. Additionally, predicted Alzheimer’s

disease risk within these zones increased with pathology

scores. Given that these post-mortem findings are definitive

in terms of confirming Alzheimer’s disease, these physical

findings grounded our computational predictions in biologic-

al evidence.

Furthermore, disease probability maps provided an infor-

mation-dense feature that yielded sensitive and specific bin-

ary predictions of Alzheimer’s disease status when passed

independently to the MLP portion of the framework (MRI

model in Fig. 5A and B). An MLP trained using just the

non-imaging features such as age, gender and MMSE score

also was predictive of Alzheimer’s disease status (non-imag-

ing model in Fig. 5A and B). Model performance was fur-

ther improved by expanding the MLP input to include

disease probability maps, gender, age, and MMSE score (fu-

sion model in Fig. 5A and B). When other non-imaging fea-

tures such as APOE status were included, model

performance slightly improved (Supplementary Fig. 4 and

Supplementary Table 6). Given the proportionality between

age and global cerebral atrophy (van de Pol et al., 2006;

Raji et al., 2009), addition of non-imaging variables at the

MLP stage also allowed us to control for the natural pro-

gression of cerebral morphological changes over the lifespan.

We also compared performance of the deep learning mod-

els against an international group of clinical neurologists

recruited to provide impressions of disease status from a ran-

domly sampled cohort of ADNI participants whose MRI,

MMSE score, age and gender were provided. The perform-

ance of the neurologists (Fig. 5A), indicated variability

across different clinical practices, with a moderate inter-rater

agreement as assessed by pairwise kappa (j) scoring

(Fig. 5A; average j = 0.493± 0.16). Interestingly, we noted

that the deep learning model that was based on MRI data

alone (MRI model; accuracy: 0.834± 0.020; Table 2),

outperformed the average neurologist (accuracy:

0.823±0.094; Supplementary Table 7). When age, gender

and MMSE information were added to the model, then the

performance increased significantly (fusion model; accuracy:

0.968±0.014; Table 2).

Consistent, high classification performance of the deep

learning model across the external datasets was confirmed

using other metrics (Table 2). We performed t-distributed

stochastic neighbour embedding (t-SNE) (van der Maaten

and Hinton, 2008), on the volumetric MRI scans using the

intensity values as inputs from all the four datasets. The t-

SNE method takes high-dimensional data and creates a low-

dimensional representation of that data, so that it can be

easily visualized. While the t-SNE plot resulted in site-specif-

ic clustering of the scans (Fig. 6A), intra-site distribution of

cases revealed no clear differentiation between Alzheimer’s

disease and normal cognition cases. This observation under-

scores a rationale for utilizing a supervised learning strategy

to predict Alzheimer’s disease status using MRI scan data

alone. We believe this is a strength of our study because des-

pite site-specific differences, the FCN model was able to gen-

eralize well on the external datasets. We then used scanner-

specific info from the ADNI cohort and generated another t-

SNE visualization, which also revealed no discernible cluster-

ing of Alzheimer’s disease or normal cognition cases

(Fig. 6B). This implies that any potential scanner-specific dif-

ferences may not have influenced the model training process.

Further, we examined the model performance visually by re-

spective clustering of Alzheimer’s disease and normal cogni-

tion cases in a t-SNE, which used features before the final

hidden layer of the MLP (Fig. 6C).

It is worth noting that our strategy represents a significant

increase in computational efficiency over a traditional CNN

approach to the same task (Step 1 in Fig. 1 versus

Supplementary Fig. 5). Given fixed dense layer dimensions,

generation of disease probability maps from traditional

CNNs requires not only sub-volumetric training, but also

sub-volumetric application to full-sized MRI volumes

(Supplementary Table 8 versus Table 2), obligating repeated

computations in order to calculate local probabilities of dis-

ease status. By circumventing this rigidity, our approach

readily generates disease probability maps (Fig. 1, Step 2),

which can be integrated with multimodal clinical data for

Figure 4 Continued

subcortical structures of the brain obtained from FreeSurfer (Fischl, 2012). A sequential colour-coding scheme denotes different levels of

pathology ranging from green (0, low) to pale red (4, high). The final column (v), shows the overlay of the magnetic resonance scan, disease

probability maps of high Alzheimer’s disease risk and the colour-coded regions based on pathology grade. (B) We then qualitatively assessed

trends of neuropathological findings from the FHS dataset (n = 11). The same colour-coding scheme as described above was used to represent

the pathology grade (0–4) in the heat maps. The boxes coloured in ‘white’ in the heat maps indicate missing data. Using the Spearman’s Rank

correlation coefficient test, an increasing Alzheimer’s disease probability risk was associated with a higher grade of amyloid-b and tau accumula-

tion, in the hippocampal formation, the middle frontal region, the amygdala and the temporal region, respectively. Biel = Bielschowsky stain;

L = left; R = right.
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Alzheimer’s disease diagnosis (Fig. 1, Step 3). As such, this

work extends recently reported efforts to abstract visual rep-

resentations of disease risk directly from medical images

(Coudray et al., 2018), and also represents an application of

FCNs to disease classification tasks as opposed to semantic

segmentation (Shelhamer et al., 2017). Additionally, the

FCN model performed at the same level as a traditional

CNN model with fully connected layers in predicting

Alzheimer’s disease status, and this result was consistent

across all the datasets (Supplementary Fig. 5 and

Figure 5 Performance of the MLP model for Alzheimer’s disease classification and model comparison with neurologists. (A)

Sensitivity-specificity and precision-recall curves showing the sensitivity, the true positive rate, versus specificity, the true negative rate, calculated

on the ADNI test set. Individual neurologist performance is indicated by the red plus symbol and averaged neurologist performance along with

the error bars is indicated by the green plus symbol on both the sensitivity-specificity and precision-recall curves on the ADNI test data. Visual

description of pairwise Cohen’s kappa (j), which denotes the inter-operator agreement between all the 11 neurologists is also shown. (B)

Sensitivity-specificity and PR curves calculated on the AIBL, FHS and NACC datasets, respectively. For all cases, model A indicates the perform-

ance of the MLP model that used MRI data as the sole input, model B is the MLP model with non-imaging features as input and model C indicates

the MLP model that used MRI data along with age, gender and MMSE values as the inputs for binary classification.
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Supplementary Table 8). Of note, the FCN model outper-

formed a traditional machine learning model that was con-

structed using derived MRI features (Supplementary Fig. 6

and Supplementary Table 9).

Discussion
Our deep learning framework links a fully convolutional net-

work to a multilayer perceptron and generates high reso-

lution disease probability maps for neurologist-level

diagnostic accuracy of Alzheimer’s disease status. The intui-

tive local probabilities outputted by our model are readily in-

terpretable, thus contributing to the growing movement

towards explainable artificial intelligence in medicine, and

deriving an individualized phenotype of insidious disease

from conventional diagnostic tools. Indeed, the disease prob-

ability maps provide a means for tracking conspicuous brain

regions implicated in Alzheimer’s disease during diagnosis.

We then aggregated disease probability maps across the en-

tire cohort to demonstrate population-level differences in

neuroanatomical risk mapping of Alzheimer’s disease and

normal cognition cases. Critically, by the standards of several

different metrics, our model displayed good predictive per-

formance, yielding high and consistent values on all the test

datasets. Such consistency between cohorts featuring broad

variance in MRI protocol, geographic location, and recruit-

ment criteria, suggests a strong degree of generalizability.

Thus, these findings demonstrate innovation at the nexus of

medicine and computing, simultaneously contributing new

insights to the field of computer vision while also expanding

the scope of biomedical applications of neural networks.

Disease probability maps were created by element-wise ap-

plication of a softmax function to the final array of

activations generated by the FCN. This step enabled the con-

version of abstract tensor encodings of neuroanatomical in-

formation to probability arrays demonstrating the likelihood

of Alzheimer’s disease at different locations in the brain given

their local geometry. Alternatively put, the model develops a

granular conceptualization of Alzheimer’s disease-suggestive

morphologies throughout the brain, and then uses this learn-

ing information in test cases to assess the probability of

Alzheimer’s disease-related pathophysiological processes

occurring at each region. The simple presentation of these

probabilities as a coherent colour map displayed alongside

traditional neuroimaging thus allows a point-by-point predic-

tion of where disease-related changes are likely to be present

(Fig. 4). Recent work has also demonstrated effective differ-

entiation of Alzheimer’s disease and normal cognition cases

using a patch-based sampling algorithm (Lu et al., 2018), but

is limited by simultaneous reliance on MRI and fluorodeoxy-

glucose PET as well as a model whose inputs are computed

as scalar averages of intensities from multi-voxel cerebral

loci. Furthermore, we believe that the broader notion of dis-

ease process mapping with deep learning has the potential to

be applied in many fields of medicine. The simple presenta-

tion of disease risk as a coherent colour map overlaid on

traditional imaging modalities aids interpretability. This is in

contrast to saliency mapping strategies that highlight certain

pixels based only on their utility to the internal functioning

of a network (Shelhamer et al., 2017), as well as methods

that highlight penultimate-layer activation values (Lu et al.,

2018). Consequently, informative anatomical information is

abstracted and lost. Our work builds upon such advances by

requiring just a single imaging modality en route to mapping

an array of raw pixel values to a disease probability map

that isomorphically preserves neuroanatomical information.

Table 2 Performance of the deep learning models

Accuracy Sensitivity Specificity F1-score MCC

MRI

ADNI test 0.834 ± 0.020 0.767 ± 0.036 0.889 ± 0.030 0.806 ± 0.024 0.666 ± 0.042

AIBL 0.870 ± 0.022 0.594 ± 0.119 0.924 ± 0.025 0.593 ± 0.088 0.520 ± 0.095

FHS 0.766 ± 0.064 0.901 ± 0.096 0.712 ± 0.123 0.692 ± 0.044 0.571 ± 0.056

NACC 0.818 ± 0.033 0.764 ± 0.031 0.849 ± 0.052 0.757 ± 0.033 0.613 ± 0.059

Non-imaging

ADNI test 0.957 ± 0.010 0.924 ± 0.019 0.983 ± 0.032 0.951 ± 0.010 0.915 ± 0.020

AIBL 0.915 ± 0.022 0.872 ± 0.037 0.923 ± 0.034 0.772 ± 0.035 0.731 ± 0.035

FHS 0.760 ± 0.042 0.517 ± 0.043 0.842 ± 0.068 0.512 ± 0.026 0.367 ± 0.053

NACC 0.854 ± 0.021 0.881 ± 0.013 0.838 ± 0.041 0.817 ± 0.019 0.703 ± 0.033

Fusion

ADNI test 0.968 ± 0.014 0.957 ± 0.014 0.977 ± 0.031 0.965 ± 0.014 0.937 ± 0.026

AIBL 0.932 ± 0.031 0.877 ± 0.032 0.943 ± 0.042 0.814 ± 0.054 0.780 ± 0.059

FHS 0.792 ± 0.039 0.742 ± 0.185 0.808 ± 0.082 0.633 ± 0.076 0.517 ± 0.098

NACC 0.852 ± 0.037 0.924 ± 0.025 0.810 ± 0.068 0.824 ± 0.032 0.714 ± 0.053

Three models were constructed for explicit performance comparison. The MRI model predicted Alzheimer’s disease status based upon imaging features derived from the patch-

wise trained FCN. The non-imaging model consisted of an MLP that processed non-imaging clinical variables (age, gender, MMSE). The fusion model appended the clinical variables

used by the MRI model to the MLP portion of the non-imaging model in order to form a multimodal imaging/non-imaging input. Accuracy, sensitivity, specificity, F1-score, and

Matthew’s correlation coefficient (MCC) are demonstrated for each. The fusion model was found to outperform the other models in nearly all metrics in each of the four datasets.

Of interest, however, we noted that the performance of the MRI model and the non-imaging model still displayed higher specificity and sensitivity than many of the human neurolo-

gists, all of whom used the full suite of available data sources to arrive at an impression.
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While traditional deep neural networks such as a CNN

with fully connected layers require an input of fixed size,

FCNs are capable of acting on inputs of arbitrary size. This

is potentially useful in datasets where heterogeneously-sized

scans can be processed without training separate classifiers

for scans of each size. Moreover, FCNs can efficiently

process volumetric scans, because their fully convolutional

nature allows them to evaluate multiple patches

Figure 6 Visualization of data. (A) Voxel-level MRI intensity values from all four datasets (ADNI, AIBL, FHS and NACC) were used as inputs

and a two-dimensional plot was generated using t-SNE, a method for visualizing high-dimensional data. The colour in the plot represents the site

and the digit ‘0’ was used to present cases who had normal cognition (NC) and the digit ‘1’ was used to show cases who had confirmed

Alzheimer’s disease (AD). (B) This t-SNE plot was generated only on using the ADNI dataset, where the colour was used to represent the scan-

ner. The digit ‘0’ was used for normal cognition cases and ‘1’ for Alzheimer’s disease cases. (C) FCN-based outputs that served as input features

to the MLP model were embedded in a two-dimensional plot generated using t-SNE for the two classes (Alzheimer’s disease and normal cogni-

tion). The colour (blue versus red) was used to distinguish normal cognition from Alzheimer’s disease cases, whereas a unique symbol shape was

used to represent individuals derived from the same cohort. Several individual cases that were clinically confirmed to have Alzheimer’s disease or

normal cognition are also shown (indicated as a black circle overlying the respective data point). The plot also indicates co-localization of subjects

in the feature space based on the disease state and not on the dataset of origin.
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simultaneously. This does not imply that the FCNs enforce

global structure into the individual patch-level predictions.

Rather, the generated disease probability maps lead to a

contiguous volumetric interpretation denoting high probabil-

ity regions of Alzheimer’s disease risk.

Certainly, limitations to the current study must be

acknowledged. We considered a case-control population in

which two subpopulations were chosen in advance that

were either cognitively normal or have the diagnosis

(Alzheimer’s disease). This scenario is not exactly representa-

tive of the standard clinical decision-making process faced

by the neurologist. Patients often present with a set of symp-

toms and results from standard neurological testing that are

indicative of a spectrum of neurodegenerative disease as

opposed to a binary scenario. Therefore, our method is not

directly applicable in its current state but serves as a first

step towards building a more comprehensive framework to

characterize multiple aetiologies of neurodegeneration. Of

note, the non-imaging data-based models performed better

on AIBL and NACC data, while the MRI-based model per-

formed better on the FHS data. As such, the MMSE value

was a key element in the study criteria for ADNI, AIBL and

NACC, and this may explain why the non-imaging data-

based model performed better on these datasets. Because the

FHS is a community cohort, it served as a relatively un-

biased dataset for model validation. Despite this study selec-

tion, our FCN model can associate MRI changes with

regional neuropathology, and provides compelling evidence

that the use of an imaging biomarker alone can accurately

assess Alzheimer’s disease status. We acknowledge that the

CNN model with fully connected layers used in this study is

based on a specific architecture and one could design CNN

models that may even outperform the FCN models, at least

in terms of test accuracy. Nonetheless, the ability for the

FCN model to generate interpretable disease probability

maps makes it more appealing than using CNN models with

fully connected layers for predicting Alzheimer’s disease

status.

Our approach has significant translational potential be-

yond Alzheimer’s disease diagnosis. Indeed, the tissue-level

changes predicted by our model suggest the prospect of dir-

ectly highlighting areas of pathophysiology across a spec-

trum of disease. It may be of interest in future studies to

determine whether the well-defined pattern of high-risk find-

ings from the currently presented framework may follow

regions of interest from PET scans. In such cases, our model

may aid in non-invasive monitoring of Alzheimer’s disease

development.

In conclusion, our deep learning framework was able to

obtain high accuracy Alzheimer’s disease classification signa-

tures from MRI data, and our model was validated against

data from independent cohorts, neuropathological findings

and expert-driven assessment. If confirmed in clinical set-

tings, this approach has the potential to expand the scope of

neuroimaging techniques for disease detection and manage-

ment. Further validation could lead to improved care and

outcomes compared with current neurological assessment, as

the search for disease-modifying therapies continues.
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